7,625 research outputs found

    Lift distribution in a rectangular jet

    Get PDF
    Computer programs predict effect of slipstream-wing flow interaction on aerodynamic characteristics of deflected slipstream and tilt aircraft. One program calculates lift distribution, lift, and drag of wing in wide slipstream. Results permit development of simplified lifting surface theory for circular jet

    Requirements for multidisciplinary design of aerospace vehicles on high performance computers

    Get PDF
    The design of aerospace vehicles is becoming increasingly complex as the various contributing disciplines and physical components become more tightly coupled. This coupling leads to computational problems that will be tractable only if significant advances in high performance computing systems are made. Some of the modeling, algorithmic and software requirements generated by the design problem are discussed

    The antigenic index: a novel algorithm for predicting antigenic determinants

    Get PDF
    In this paper, we introduce a computer algorithm which can be used to predict the topological features of a protein directly from its primary amino acid sequence. The computer program generates values for surface accessibility parameters and combines these values with those obtained for regional backbone flexibility and predicted secondary structure. The output of this algorithm, the antigenic index, is used to create a linear surface contour profile of the protein. Because most, if not all, antigenic sites are located within surface exposed regions of a protein, the program offers a reliable means of predicting potential antigenic determinants. We have tested the ability of this program to generate accurate surface contour profiles and predict antigenic sites from the linear amino acid sequences of well-characterized proteins and found a strong correlation between the predictions of the antigenic index and known structural and biological data

    Numerical calculation of the transonic flow past a swept wing

    Get PDF
    A numerical method is presented for analyzing the transonic potential flow past a lifting, swept wing. A finite difference approximation to the full potential equation is solved in a coordinate system which is nearly conformally mapped from the physical space in planes parallel to the symmetry plane, and reduces the wing surface to a portion of one boundary of the computational grid. A coordinate invariant, rotated difference scheme is used, and the difference equations are solved by relaxation. The method is capable of treating wings of arbitrary planform and dihedral, although approximations in treating the tips and vortex sheet make its accuracy suspect for wings of small aspect ratio. Comparisons of calculated results with experimental data are shown for examples of both conventional and supercritical transport wings. Agreement is good for both types, but it was found necessary to account for the displacement effect of the boundary layer for the supercritical wing, presumably because of its greater sensitivity to changes in effective geometry

    An LU implicity scheme for high speed inlet analysis

    Get PDF
    A numerical method is developed to analyze the inviscid flowfield of a high speed inlet by the solution of the Euler equations. The lower-upper implicit scheme in conjunction with adaptive dissipation proves to be an efficient and robust nonoscillatory shock capturing technique for high Mach number flows as well as for transonic flows

    Automatic adaptive grid refinement for the Euler equations

    Get PDF
    A method of adaptive grid refinement for the solution of the steady Euler equations for transonic flow is presented. Algorithm automatically decides where the coarse grid accuracy is insufficient, and creates locally uniform refined grids in these regions. This typically occurs at the leading and trailing edges. The solution is then integrated to steady state using the same integrator (FLO52) in the interior of each grid. The boundary conditions needed on the fine grids are examined and the importance of treating the fine/coarse grid inerface conservatively is discussed. Numerical results are presented

    Preliminary study of the use of the STAR-100 computer for transonic flow calculations

    Get PDF
    An explicit method for solving the transonic small-disturbance potential equation is presented. This algorithm, which is suitable for the new vector-processor computers such as the CDC STAR-100, is compared to successive line over-relaxation (SLOR) on a simple test problem. The convergence rate of the explicit scheme is slower than that of SLOR, however, the efficiency of the explicit scheme on the STAR-100 computer is sufficient to overcome the slower convergence rate and allow an overall speedup compared to SLOR on the CYBER 175 computer
    • …
    corecore